Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 6189-6198, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386630

RESUMO

Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.


Assuntos
Produtos Biológicos , Policetídeos , Fungos/genética , Saccharomyces cerevisiae/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/química , Produtos Biológicos/metabolismo
2.
J Nat Prod ; 87(3): 583-590, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414352

RESUMO

Treatment of 27-O-acetylwithaferin A (2) with the non-nucleophilic base, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), afforded 5ß,6ß-epoxy-4ß-hydroxy-1-oxo-witha-2(3),23(24),25(27)-trienolide (3) and 4, a homodimer of withaferin A resulting from a Diels-Alder [4 + 2] type cycloaddition of the intermediate α,ß-dimethylene-δ-lactone (9). Structures of 3 and 4 were elucidated using HRMS and 1D and 2D NMR spectroscopic data. The structure of 4 was also confirmed by single crystal X-ray crystallographic analysis of its bis-4-O-p-nitrobenzoate (8). Formation of withaferin A homodimer (4) as the major product suggests regio- and stereoselectivity of the Diels-Alder [4 + 2] cycloaddition reaction of 9. Acetylation of 2-4 afforded their acetyl derivatives 5-7, respectively. Compounds 2-4 and 6-8 were evaluated for their cytotoxic activities against four prostate cancer (PC) cell lines (LNCaP, 22Rv1, DU-145, and PC-3) and normal human foreskin fibroblast (HFF) cells. Significantly, 4 exhibited improved activity compared to the other compounds for most of the tested cell lines.


Assuntos
Ácido Acético , Vitanolídeos , Masculino , Humanos , Reação de Cicloadição , Vitanolídeos/farmacologia , Vitanolídeos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
3.
Cancers (Basel) ; 16(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339421

RESUMO

BACKGROUND: Defects in apoptosis regulation are one of the classical features of cancer cells, often associated with more aggressiveness and failure to therapeutic options. We investigated the combinatorial antitumor effects of a natural product, physachenolide C (PCC) and bortezomib, in KRASmut/P53mut lung cancer cells and xenograft mice models. METHODS: The in vitro anticancer effects of the bortezomib and PCC combination were investigated using cell viability, migration, and invasion assays in 344SQ, H23, and H358 cell lines. Furthermore, the effects of combination treatment on the critical parameters of cellular metabolism, including extracellular acidification rate (ECAR) and mitochondrial oxidative phosphorylation based on the oxygen consumption rate of cancer cells were assessed using Seahorse assay. Finally, the antitumor effect of the bortezomib (1 mg/kg) and PCC (10 mg/kg) combination was evaluated using xenograft mice models. RESULTS: Our data showed that the bortezomib-PCC combination was more effective in reducing the viability of lung cancer cells in comparison with the individual treatments. Similarly, the combination treatment showed a significant inhibition of cell migration and invasion of cancer cells. Additionally, the key anti-apoptotic protein c-FLIP was significantly inhibited along with a substantial reduction in the key parameters of cellular metabolism in cancer cells. Notably, the bortezomib or PCC inhibited the tumor growth compared to the control group, the tumor growth inhibition was much more effective when bortezomib was combined with PCC in tumor xenograft mice models. CONCLUSION: These findings demonstrate that PCC sensitizes cancer cells to bortezomib, potentially improving the antitumor effects against KRASmut/P53mut lung cancer cells, with an enhanced efficacy of combination treatments without causing significant side effects.

4.
ACS Omega ; 8(22): 20085-20095, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305315

RESUMO

Four new triterpenes, 25-dehydroxy-25-methoxyargentatin C (1), 20S-hydroxyargentatin C (2), 20S-hydroxyisoargentatin C (3), and 24-epi-argentatin C (4), together with 10 known triterpenes (5-14) were isolated from the aerial parts of Parthenium incanum. The structures of 1-4 were elucidated by detailed analysis of their spectroscopic data, and the known compounds 5-14 were identified by comparison of their spectroscopic data with those reported. Since argentatin C (11) was found to exhibit antinociceptive activity by decreasing the excitability of rat and macaque dorsal root ganglia (DRG) neurons, 11 and its new analogues 1-4 were evaluated for their ability to decrease the excitability of rat DRG neurons. Of the argentatin C analogues tested, 25-dehydroxy-25-methoxyargentatin C (1) and 24-epi-argentatin C (4) decreased neuronal excitability in a manner comparable to 11. Preliminary structure-activity relationships for the action potential-reducing effects of argentatin C (11) and its analogues 1-4, and their predicted binding sites in pain-relevant voltage-gated sodium and calcium channels (VGSCs and VGCCs) in DRG neurons are presented.

5.
Neurobiol Pain ; 13: 100116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687466

RESUMO

Over the past three decades, there has been a significant growth in the use of natural products, with approximately 80% of individuals using them for some aspect of primary healthcare. Our laboratories have identified and studied natural compounds with analgesic effects from dry land plants or their associated fungus during the past ten years. Here, we isolated and characterized thirteen betulin analogs and fifteen betulinic acid analogs for their capacity to prevent calcium influx brought on by depolarization in sensory neurons. The in vitro inhibition of voltage-gated calcium channels by the top drugs was then assessed using whole cell patch clamp electrophysiology. In vivo experiments, conducted at two sites, evaluated the best compound in acute and tonic, neuropathic, inflammatory, post-operative and visceral models of pain. We found that the betulinic acid analog 8 inhibited calcium influx in rat dorsal root ganglion neurons by inhibiting N- (CaV2.2) and T- (CaV3) type voltage-gated calcium channels. Moreover, intrathecal delivery of analog 8 had analgesic activity in both spared nerve injury model of neuropathic pain and acute and tonic pain induced by formalin. The results presented herein highlight the potential antinociceptive properties of betulinic acid analog 8 and set the stage for the development of novel non-opioid pain therapeutics based on the triterpenoid scaffold of betulinic acid.

6.
Br J Pharmacol ; 180(9): 1267-1285, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36245395

RESUMO

BACKGROUND AND PURPOSE: Postoperative pain occurs in as many as 70% of surgeries performed worldwide. Postoperative pain management still relies on opioids despite their negative consequences, resulting in a public health crisis. Therefore, it is important to develop alternative therapies to treat chronic pain. Natural products derived from medicinal plants are potential sources of novel biologically active compounds for development of safe analgesics. In this study, we screened a library of natural products to identify small molecules that target the activity of voltage-gated sodium and calcium channels that have important roles in nociceptive sensory processing. EXPERIMENTAL APPROACH: Fractions derived from the Native American medicinal plant, Parthenium incanum, were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion (DRG) neurons. Further separation of these fractions yielded a cycloartane-type triterpene identified as argentatin C, which was additionally evaluated using whole-cell voltage and current-clamp electrophysiology, and behavioural analysis in a mouse model of postsurgical pain. KEY RESULTS: Argentatin C blocked the activity of both voltage-gated sodium and low-voltage-activated (LVA) calcium channels in calcium imaging assays. Docking analysis predicted that argentatin C may bind to NaV 1.7-1.9 and CaV 3.1-3.3 channels. Furthermore, argentatin C decreased Na+ and T-type Ca2+ currents as well as excitability in rat and macaque DRG neurons, and reversed mechanical allodynia in a mouse model of postsurgical pain. CONCLUSION AND IMPLICATIONS: These results suggest that the dual effect of argentatin C on voltage-gated sodium and calcium channels supports its potential as a novel treatment for painful conditions.


Assuntos
Canais de Cálcio Tipo T , Canais de Sódio Disparados por Voltagem , Camundongos , Ratos , Animais , Canais de Cálcio Tipo T/metabolismo , Ratos Sprague-Dawley , Sódio/metabolismo , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Canais de Sódio Disparados por Voltagem/metabolismo
7.
J Med Chem ; 66(1): 913-933, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36577036

RESUMO

A pulldown using a biotinylated natural product of interest in the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.


Assuntos
Fatores de Transcrição , Vitanolídeos , Masculino , Humanos , Proteínas Nucleares , Domínios Proteicos , Proteínas de Ciclo Celular
8.
Curr Res Chem Biol ; 2: 100023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815069

RESUMO

The proteases TMPRSS2 (transmembrane protease serine 2) and furin are known to play important roles in viral infectivity including systematic COVID-19 infection through priming of the spike protein of SARS-CoV-2 and related viruses. To discover small-molecules capable of inhibiting these host proteases, we established convenient and cost-effective cell-based assays employing Vero cells overexpressing TMPRSS2 and furin. A cell-based proteolytic assay for broad-spectrum protease inhibitors was also established using human prostate cancer cell line LNCaP. Evaluation of camostat, nafamostat, and gabexate in these cell-based assays confirmed their known TMPRSS2 inhibitory activities. Diminazene, a veterinary medicinal agent and a known furin inhibitor was found to inhibit both TMPRSS2 and furin with IC50s of 1.35 and 13.2 µM, respectively. Establishment and the use of cell-based assays for evaluation TMPRSS2 and furin inhibitory activity and implications of dual activity of diminazene vs TMPRSS2 and furin are presented.

10.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164184

RESUMO

Withanolides constitute one of the most interesting classes of natural products due to their diversity of structures and biological activities. Our recent studies on withanolides obtained from plants of Solanaceae including Withania somnifera and a number of Physalis species grown under environmentally controlled aeroponic conditions suggested that this technique is a convenient, reproducible, and superior method for their production and structural diversification. Investigation of aeroponically grown Physalis coztomatl afforded 29 withanolides compared to a total of 13 obtained previously from the wild-crafted plant and included 12 new withanolides, physacoztolides I-M (9-13), 15α-acetoxy-28-hydroxyphysachenolide C (14), 28-oxophysachenolide C (15), and 28-hydroxyphysachenolide C (16), 5α-chloro-6ß-hydroxy-5,6-dihydrophysachenolide D (17), 15α-acetoxy-5α-chloro-6ß-hydroxy-5,6-dihydrophysachenolide D (18), 28-hydroxy-5α-chloro-6ß-hydroxy-5,6-dihydrophysachenolide D (19), physachenolide A-5-methyl ether (20), and 17 known withanolides 3-5, 8, and 21-33. The structures of 9-20 were elucidated by the analysis of their spectroscopic data and the known withanolides 3-5, 8, and 21-33 were identified by comparison of their spectroscopic data with those reported. Evaluation against a panel of prostate cancer (LNCaP, VCaP, DU-145, and PC-3) and renal carcinoma (ACHN) cell lines, and normal human foreskin fibroblast (WI-38) cells revealed that 8, 13, 15, and 17-19 had potent and selective activity for prostate cancer cell lines. Facile conversion of the 5,6-chlorohydrin 17 to its 5,6-epoxide 8 in cell culture medium used for the bioassay suggested that the cytotoxic activities observed for 17-19 may be due to in situ formation of their corresponding 5ß,6ß-epoxides, 8, 27, and 28.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Physalis/crescimento & desenvolvimento , Vitanolídeos/metabolismo , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/química , Vias Biossintéticas , Biotecnologia , Linhagem Celular Tumoral , Humanos , Masculino , Physalis/química , Physalis/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Vitanolídeos/química
11.
Transl Oncol ; 15(1): 101259, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735896

RESUMO

Melanoma is an aggressive skin cancer that metastasizes to other organs. While immune checkpoint blockade with anti-PD-1 has transformed the treatment of advanced melanoma, many melanoma patients fail to respond to anti-PD-1 therapy or develop acquired resistance. Thus, effective treatment of melanoma still represents an unmet clinical need. Our prior studies support the anti-cancer activity of the 17ß-hydroxywithanolide class of natural products, including physachenolide C (PCC). As single agents, PCC and its semi-synthetic analog demonstrated direct cytotoxicity in a panel of murine melanoma cell lines, which share common driver mutations with human melanoma; the IC50 values ranged from 0.19-1.8 µM. PCC treatment induced apoptosis of tumor cells both in vitro and in vivo. In vivo treatment with PCC alone caused the complete regression of established melanoma tumors in all mice, with a durable response in 33% of mice after discontinuation of treatment. T cell-mediated immunity did not contribute to the therapeutic efficacy of PCC or prevent tumor recurrence in YUMM2.1 melanoma model. In addition to apoptosis, PCC treatment induced G0-G1 cell cycle arrest of melanoma cells, which upon removal of PCC, re-entered the cell cycle. PCC-induced cycle cell arrest likely contributed to the in vivo tumor recurrence in a portion of mice after discontinuation of treatment. Thus, 17ß-hydroxywithanolides have the potential to improve the therapeutic outcome for patients with advanced melanoma.

12.
J Nat Prod ; 84(12): 3029-3038, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34851111

RESUMO

Physachenolide C (1) is a 17ß-hydroxywithanolide natural product with a unique anticancer potential, as it exhibits potent and selective in vitro antiproliferative activity against prostate cancer (PC) cells and promotes TRAIL-induced apoptosis of renal carcinoma (RC) and poly I:C-induced apoptosis of melanoma cells. To explore the effect of ring A/B modifications of physachenolide C (1) on these biological activities, 23 of its natural and semisynthetic analogues were evaluated. Analogues 4-23 were prepared by chemical transformations of a readily accessible compound, physachenolide D (2). Compound 1 and its analogues 2-23 were evaluated for their antiproliferative activity against PC (LNCaP and 22Rv1), RC (ACHN), and melanoma (M14 and SK-MEL-28) cell lines and normal human foreskin fibroblast (HFF) cells. Most of the active analogues had selective and potent activity in reducing cell number for PC cell lines, some showing selectivity for androgen-independent and enzalutamide-resistant 22Rv1 cells compared to androgen-dependent LNCaP cells. Analogues with IC50s below 5.0 µM against ACHN cells, when tested in the presence of TRAIL, showed a significantly increased ability to reduce cell number, and those analogues active against the M14 and SK-MEL-28 cell lines exhibited enhanced activity when combined with poly I:C. These data provide additional structure-activity relationship information for 17ß-hydroxywithanolides and suggest that selective activities of some analogues may be exploited to develop natural products-based tumor-specific agents for cancer chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Imunoterapia , Neoplasias Renais/terapia , Melanoma/terapia , Neoplasias da Próstata/tratamento farmacológico , Vitanolídeos/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/patologia , Vitanolídeos/química
13.
J Nat Prod ; 84(8): 2321-2335, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34445874

RESUMO

Multiple myeloma (MM) is a hematological cancer in which relapse and resistance are highly frequent. Therefore, alternatives to conventional treatments are necessary. Withaferin A, a withanolide isolated from Withania somnifera, has previously shown promising activity against various MM models. In the present study, structure-activity relationships (SARs) were evaluated using 56 withanolides. The antiproliferative activity was assessed in three MM cell lines and in a 3D MM coculture model to understand the in vitro activity of compounds in models of various complexity. While the results obtained in 2D allowed a quick and simple evaluation of cytotoxicity used for a first selection, the use of the 3D MM coculture model allowed filtering compounds that perform better in a more complex setup. This study shows the importance of the last model as a bridge between 2D and in vivo studies to select the most active compounds and ultimately lead to a reduction of animal use for more sustained in vivo studies. NF-κB inhibition was determined to evaluate if this could be one of the targeted pathways. The most active compounds, withanolide D (2) and 38, should be further evaluated in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Withania/química , Vitanolídeos/química
14.
ACS Omega ; 6(23): 15486-15498, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151127

RESUMO

A total of 12 new cycloartane- and lanostane-type triterpenoids including 16-deoxyargentatin A (1), 16-deoxyisoargentatin A (2), 7-oxoisoargentatin A (3), 24-epi-argentatin H (4), 24-O-p-anisoylargentatin C (5), 24-O-trans-cinnamoylargentatin C (6), 16-dehydroargentatin C (7), 16,17(20)-didehydroargentatin C (8), isoargentatin C (9), isoargentatin H (10), 3-epi-quisquagenin (11), and isoquisquagenin (12) together with 10 known triterpenoids (13-22) were isolated from the resin of Parthenium argentatum AZ-2 obtained as a byproduct of Bridgestone guayule rubber production. The structures of new triterpenoids 1-12 and argentatin H (13), which has previously been characterized as its diacetate (23), were elucidated by extensive analysis of their spectroscopic data and chemical conversions, and the known compounds 14-22 were identified by comparison of their spectroscopic data with those reported. Of these, 13, 14, and 18 exhibited weak cytotoxic activity for several cancer cell lines.

15.
Cancer Res ; 81(12): 3374-3386, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33837043

RESUMO

Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.


Assuntos
Produtos Biológicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Imunoterapia/métodos , Melanoma Experimental/tratamento farmacológico , Poli I-C/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Vitanolídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Indutores de Interferon/farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Nat Prod ; 84(2): 187-194, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33586438

RESUMO

Aeroponically grown Physalis acutifolia afforded five new and six known withanolides including 10 physalins. The structures of the new withanolides, acutifolactone (1), 5ß,6ß-epoxyphysalin C (2), 5α-chloro-6ß-hydroxyphysalin C (3), and an inseparable mixture of 5ß,6ß-epoxy-2,3-dihydrophysalin F-3ß-O-sulfate (4) and 5ß,6ß-epoxy-2,3-dihydrophysalin C-3ß-O-sulfate (5), were elucidated by analysis of their spectroscopic data and chemical interconversions. The known withanolides were identified as physalins B (6), D (7), F (8), H (9), I (10), and U (11) by comparison of their spectroscopic data with those reported. Evaluation of 1-11 and the derivatives, 13 and 13a, obtained from 4 and 5 against a panel of four human cancer cell lines [NCI-H460 (non-small-cell lung), SF-268 (CNS glioma), PC-3 (prostate adenocarcinoma), and MCF-7 (breast adenocarcinoma)] and normal human lung fibroblast (WI-38) cells revealed that physalins 2, 3, 8, and 9 exhibited selective cytotoxic activity to at least one of the cancer cell lines tested compared to the normal cells and that 7, 10, and 11 were inactive up to a concentration of 10.0 µM. These data provided some preliminary structure-activity relationships and suggested that the mechanism of cytotoxic activity of physalins may differ from other classes of withanolides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Physalis/química , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Arizona , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Relação Estrutura-Atividade , Vitanolídeos/isolamento & purificação
17.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143346

RESUMO

Bioassay-guided fractionation of a cytotoxic extract derived from a solid potato dextrose agar (PDA) culture of Teratosphaeria sp. AK1128, a fungal endophyte of Equisetum arvense, afforded three new naphtho-γ-pyrone dimers, teratopyrones A-C (1-3), together with five known naphtho-γ-pyrones, aurasperone B (4), aurasperone C (5), aurasperone F (6), nigerasperone A (7), and fonsecin B (8), and two known diketopiperazines, asperazine (9) and isorugulosuvine (10). The structures of 1-3 were determined on the basis of their spectroscopic data. Cytotoxicity assay revealed that nigerasperone A (7) was moderately active against the cancer cell lines PC-3M (human metastatic prostate cancer), NCI-H460 (human non-small cell lung cancer), SF-268 (human CNS glioma), and MCF-7 (human breast cancer), with IC50s ranging from 2.37 to 4.12 µM while other metabolites exhibited no cytotoxic activity up to a concentration of 5.0 µM.


Assuntos
Antineoplásicos , Ascomicetos/química , Endófitos/química , Equisetum/microbiologia , Neoplasias/tratamento farmacológico , Pironas , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Endófitos/metabolismo , Feminino , Humanos , Células MCF-7 , Masculino , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Pironas/química , Pironas/isolamento & purificação , Pironas/farmacologia
18.
J Am Chem Soc ; 142(40): 17093-17104, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32833442

RESUMO

Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete Rhytidhysteron rufulum uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced in trans by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/química , Policetídeo Sintases/biossíntese , Policetídeo Sintases/química , Aciltransferases/química , Sequência de Aminoácidos , Vias Biossintéticas , Técnicas de Química Combinatória , Modelos Moleculares , Família Multigênica/genética , Fenilacetatos/química , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Tioléster Hidrolases/química
19.
Mol Brain ; 13(1): 73, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393368

RESUMO

Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Gânglios Espinais/efeitos dos fármacos , Limoninas/farmacologia , Neuralgia/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/virologia , Limoninas/administração & dosagem , Limoninas/química , Neuralgia/metabolismo , Neuralgia/virologia , Nociceptores/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Tetrodotoxina/farmacologia
20.
Tetrahedron ; 76(43)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33716326

RESUMO

Incorporation of the epigenetic modifier suberoylanilide hydroxamic acid (SAHA) into a potato dextrose broth culture of the endophytic fungus Aspergillus sp. AST0006 affected its polyketide biosynthetic pathway providing two new 3-(4-oxopyrano)-chromen-2-ones, aspyranochromenones A (1) and B (2), and the isocoumarin, (-)-6,7-dihydroxymellein (3). Eight additional metabolites (4-11) and two biotransformation products of SAHA (12-13) were also encountered. The planar structures and relative configurations of the new metabolites 1-2 were elucidated with the help of high-resolution mass, 1D and 2D NMR spectroscopic data and the absolute configurations of 1-3 were determined by comparison of experimental and calculated ECD data. Possible biosynthetic pathways to 1 and 2 are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...